

 Navigation

 	
 index

 	
 next |

 	Reading List 2.0.0 documentation

Reading List

[image: travis] [https://travis-ci.org/mozilla-services/readinglist] [image: Coverage] [https://coveralls.io/r/mozilla-services/readinglist] [image: Documentation Status] [http://readinglist.readthedocs.org/en/latest/]

Reading List is a service that aims to synchronize a list of articles URLs
between a set of devices owned by a same account.

	Online documentation [http://readinglist.readthedocs.org/en/latest/]

	Issue tracker [https://github.com/mozilla-services/readinglist/issues]

	Contributing [http://readinglist.readthedocs.org/en/latest/contributing.html]

Table of content

	API Endpoints
	Authentication

	Resource endpoints

	Batch operations

	Utility endpoints for OPS and Devs

	Server timestamps

	API versioning

	Backoff indicators

	Error responses

	Data model
	Articles

	Installation
	Run locally

	Install and setup PostgreSQL

	Cryptography libraries

	Running in production

	Contributing
	Run tests

	Run load tests

	IRC channel

	Changelog
	2.0.0 (2015-07-22)

	1.7.0 (2015-04-15)

	1.6.0 (2015-04-10)

	1.5.0 (2015-03-30)

	1.4.0 (2015-03-27)

	1.3.0 (2015-03-25)

	1.2.0 (2015-03-20)

	1.1.0 (2015-03-18)

	1.0 (2015-03-03)

	0.2.2 (2015-02-13)

	0.2.1 (2015-02-11)

	0.2 (2015-02-09)

	0.1 (2015-01-30)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

API Endpoints

	Authentication
	Firefox Account OAuth Bearer token
	Obtain the token
	Using the Web UI

	Custom flow

	Basic Auth

	Resource endpoints
	GET /articles
	Filtering

	Sorting

	Counting

	Polling for changes

	Paginate

	List of available URL parameters

	Combining all parameters

	Example

	POST /articles
	Validation

	Conflicts

	Example

	DELETE /articles
	Example

	GET /articles/<id>
	Example

	DELETE /articles/<id>
	Example

	PATCH /articles/<id>
	Modifiable fields

	Response behavior
	Using Response-Behavior: light

	Using Response-Behavior: diff

	Errors

	Conflicts

	Example

	Batch operations
	POST /batch

	Utility endpoints for OPS and Devs
	GET /

	GET /__heartbeat__

	Server timestamps

	API versioning
	Versionning

	Deprecation

	Backoff indicators
	Backoff header on heavy load

	Retry-After indicators

	Error responses
	Protocol description

	Error codes

	Validation errors

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Authentication

Firefox Account OAuth Bearer token

Use the OAuth token with this header:

Authorization: Bearer <oauth_token>

Obtain the token

Using the Web UI

	Navigate the client to GET /v2/fxa-oauth/login?redirect=http://app-endpoint/#. There, a session
cookie will be set, and the client will be redirected to a login
form on the FxA content server

	After submitting the credentials on the login page, the client will
be redirected to http://app-endpoint/#{token} the web-app.

Custom flow

The GET /v2/fxa-oauth/params endpoint can be use to get the
configuration in order to trade the Firefox Account BrowserID with a
Bearer Token. See Firefox Account documentation about this behavior [https://developer.mozilla.org/en-US/Firefox_Accounts#Firefox_Accounts_BrowserID_API]

$ http GET http://localhost:8000/v2/fxa-oauth/params -v

GET /v2/fxa-oauth/params HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 103
Content-Type: application/json; charset=UTF-8
Date: Thu, 19 Feb 2015 09:28:37 GMT
Server: waitress

{
 "client_id": "89513028159972bc",
 "oauth_uri": "https://oauth-stable.dev.lcip.org",
 "scope": "readinglist"
}

Basic Auth

In addition to OAuth, Basic Auth can be enabled in the configuration using
cliquet.basic_auth_enabled = true.

Articles will then be stored for any username/password combination provided.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Resource endpoints

In this section, the request example provided are performed using
httpie [https://github.com/jkbr/httpie] .

GET /articles

Requires authentication

Returns all records of the current user for this resource.

The returned value is a JSON mapping containing:

	items: the list of records, with exhaustive attributes

A Total-Records header is sent back to indicate the estimated
total number of records included in the response.

A header Last-Modified will provide the current timestamp of the
collection (see Server timestamps section). It is likely to be used
by client to provide If-Modified-Since or If-Unmodified-Since
headers in subsequent requests.

Filtering

Single value

	/articles?unread=true

Minimum and maximum

Prefix attribute name with min_ or max_:

	/articles?min_word_count=4000

	note:	The lower and upper bounds are inclusive (i.e equivalent to
greater or equal).

	note:	lt_ and gt_ can also be used to exclude the bound.

Exclude

Prefix attribute name with not_:

	/articles?not_read_position=0

	note:	Will return an error if a field is unknown.

	note:	The Last-Modified response header will always be the same as
the unfiltered collection.

Sorting

	/articles?_sort=-last_modified,title

	note:	Ordering on a boolean field gives true values first.

	note:	Will return an error if a field is unknown.

Counting

In order to count the number of records, for a specific field value for example,
without fetching the actual collection, a HEAD request can be
used. The Total-Records response header will then provide the
total number of records.

See batch endpoint to count several collections in one request.

Polling for changes

The _since parameter is provided as an alias for
gt_last_modified.

	/articles?_since=123456

The new value of the collection latest modification is provided in
headers (see Server timestamps section).

When filtering on last_modified (i.e. with _since or _to parameters),
every deleted articles will appear in the list with a deleted status
(deleted=true).

If the request header If-Modified-Since is provided, and if the
collection has not suffered changes meanwhile, a 304 Not Modified
response is returned.

	note:	The _to parameter is also available, and is an alias for
lt_last_modified (strictly inferior).

Paginate

If the _limit parameter is provided, the number of items is limited.

If there are more items for this collection than the limit, the
response will provide a Next-Page header with the URL for the
Next-Page.

When there is not more Next-Page response header, there is nothing
more to fetch.

Pagination works with sorting and filtering.

List of available URL parameters

	<prefix?><attribute name>: filter by value(s)

	_since: polling changes

	_sort: order list

	_limit: pagination max size

	_token: pagination token

Combining all parameters

Filtering, sorting and paginating can all be combined together.

	/articles?_sort=-last_modified&_limit=100

Example

http POST http://localhost:8000/v2/articles?_sort=-last_modified -v --auth "admin:"

GET /v2/articles?_sort=-last_modified HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Basic YWRtaW46
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Last-Modified, Total-Records, Alert, Next-Page
Content-Length: 610
Content-Type: application/json; charset=UTF-8
Date: Fri, 27 Feb 2015 16:20:08 GMT
Last-Modified: 1425053903124
Server: waitress
Total-Records: 1

{
 "items": [
 {
 "added_by": "Natim",
 "added_on": 1425053903123,
 "excerpt": "",
 "favorite": false,
 "id": "ff795c43c02145a4b7a5df5260ee182d",
 "is_article": true,
 "last_modified": 1425053903124,
 "marked_read_by": null,
 "marked_read_on": null,
 "read_position": 0,
 "resolved_title": "The Hawk Authorization protocol",
 "resolved_url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "archived": false,
 "stored_on": 1425053903123,
 "title": "The Hawk Authorization protocol",
 "unread": true,
 "url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "word_count": null
 }
]
}

POST /articles

Requires authentication

Used to create a record on the server. The POST body is a JSON
mapping containing the values of the resource schema fields.

	url

	title

	added_by

The POST response body is the newly created record, if all posted values are valid.

If the request header If-Unmodified-Since is provided, and if the record has
changed meanwhile, a 412 Precondition failed error is returned.

To get a list of mandatory, optional and default values, refer to the
Data model.

Validation

If the posted values are invalid (e.g. field value is not an integer)
an error response is returned with status 400.

Conflicts

The Reading List Server provides an automatic conflict resolution
algorithm for articles.

An article is uniquely defined in the database by its url and
resolved_url fields. The resolved_url field can be different
from the url value when the client has to follow one or several
redirections.

	note:	Unicity on URLs is determined by the full URL, including location hash.
(e.g. http://news.com/day-1.html#paragraph1, http://spa.com/#/content/3)

	note:	Deleted records are not taken into account for field unicity.

When a client pushes a new article which url or resolved_url already
exists in the database, the automatic conflict resolver will simply keep
the original one with all its values (title, summary etc.) and return
to the client its information. No duplicate is created.

Updating the title, excerpt or word_count of an existing article
won’t raise any conflict: the last call wins.

For both updates and creation, the automatic conflict resolution can be
bypassed with a If-Unmodified-Since in requests headers.

In that case, a 412 Precondition failed error is returned:
- for a POST on the collection if something was changed in the database

in the interim.

	for a PATCH on an article that was changed in the interim.

	note:	If two articles with conflicting URLs are posted in the same batch, the same
behavior as described above will apply, as the batch queries are processed
in a sequential order.

Example

http POST http://localhost:8000/v2/articles \
 title="The Hawk Authorization protocol" \
 url=https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/ \
 added_by=Natim \
 --auth "admin:" -v

POST /v2/articles HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Basic YWRtaW46
Content-Length: 150
Content-Type: application/json; charset=utf-8
Host: localhost:8000
User-Agent: HTTPie/0.8.0

{
 "added_by": "Natim",
 "title": "The Hawk Authorization protocol",
 "url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/"
}

HTTP/1.1 201 Created
Access-Control-Expose-Headers: Backoff, Retry-After, Last-Modified, Total-Records, Alert, Next-Page
Content-Length: 597
Content-Type: application/json; charset=UTF-8
Date: Fri, 27 Feb 2015 16:18:23 GMT
Server: waitress

{
 "added_by": "Natim",
 "added_on": 1425053903123,
 "archived": false,
 "excerpt": "",
 "favorite": false,
 "id": "ff795c43c02145a4b7a5df5260ee182d",
 "is_article": true,
 "last_modified": 1425053903124,
 "marked_read_by": null,
 "marked_read_on": null,
 "read_position": 0,
 "resolved_title": "The Hawk Authorization protocol",
 "resolved_url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "stored_on": 1425053903123,
 "title": "The Hawk Authorization protocol",
 "unread": true,
 "url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "word_count": null
}

DELETE /articles

Requires authentication

Delete multiple records. Enabled by default, see recommended production
settings to disable.

The DELETE response is a JSON mapping with an items attribute, returning
the list of records that were deleted.

It supports the same filtering capabilities as GET.

If the request header If-Unmodified-Since is provided, and if the collection
has changed meanwhile, a 412 Precondition failed error is returned.

Example

http DELETE http://localhost:8000/v2/articles \
 --auth "admin:" -v

DELETE /v2/articles HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Basic YWRtaW46
Content-Length: 0
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Last-Modified, Alert
Content-Length: 100
Content-Type: application/json; charset=UTF-8
Date: Fri, 27 Feb 2015 16:27:55 GMT
Server: waitress

{
 "items": [
 {
 "deleted": true,
 "id": "30afb809ca7745a58496a09c6a4afcac",
 "last_modified": 1425054475110
 }
]
}

GET /articles/<id>

Requires authentication

Returns a specific record by its id.

For convenience and consistency, a header Last-Modified will also repeat the
value of last_modified.

If the request header If-Modified-Since is provided, and if the record has not
changed meanwhile, a 304 Not Modified is returned.

Example

http GET http://localhost:8000/v2/articles/30afb809ca7745a58496a09c6a4afcac \
 --auth "admin:" -v

GET /v2/articles/30afb809ca7745a58496a09c6a4afcac HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Basic YWRtaW46
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Last-Modified, Alert
Content-Length: 597
Content-Type: application/json; charset=UTF-8
Date: Fri, 27 Feb 2015 16:22:38 GMT
Last-Modified: 1425054146681
Server: waitress

{
 "added_by": "Natim",
 "added_on": 1425054146680,
 "archived": false,
 "excerpt": "",
 "favorite": false,
 "id": "30afb809ca7745a58496a09c6a4afcac",
 "is_article": true,
 "last_modified": 1425054146681,
 "marked_read_by": null,
 "marked_read_on": null,
 "read_position": 0,
 "resolved_title": "The Hawk Authorization protocol",
 "resolved_url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "stored_on": 1425054146680,
 "title": "The Hawk Authorization protocol",
 "unread": true,
 "url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "word_count": null
}

DELETE /articles/<id>

Requires authentication

Delete a specific record by its id.

The DELETE response is the record that was deleted.

If the record is missing (or already deleted), a 404 Not Found is returned. The client might
decide to ignore it.

If the request header If-Unmodified-Since is provided, and if the record has
changed meanwhile, a 412 Precondition failed error is returned.

	note:	Once deleted, an article will appear in the collection with a deleted status
(deleted=true) and will have most of its fields empty.

Example

http DELETE http://localhost:8000/v2/articles/ff795c43c02145a4b7a5df5260ee182d \
 --auth "admin:" -v

DELETE /v2/articles/ff795c43c02145a4b7a5df5260ee182d HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Basic YWRtaW46
Content-Length: 0
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Last-Modified, Alert
Content-Length: 87
Content-Type: application/json; charset=UTF-8
Date: Fri, 27 Feb 2015 16:21:00 GMT
Server: waitress

{
 "deleted": True,
 "id": "ff795c43c02145a4b7a5df5260ee182d",
 "last_modified": 1425054060041
}

PATCH /articles/<id>

Requires authentication

Modify a specific record by its id. The PATCH body is a JSON
mapping containing a subset of articles fields.

The PATCH response is the modified record (full).

Modifiable fields

	title

	excerpt

	favorite

	unread

	archived

	read_position

Since article fields resolution is performed by the client in the first version
of the API, the following fields are also modifiable:

	is_article

	resolved_url

	resolved_title

Response behavior

On a PATCH it is possible to choose among different behaviors for the response content.

Three behaviors are available:

	full: Returns the whole record (default).

	light: Returns only the fields whose value was changed.

	diff: Returns only the fields values that don’t match those provided.

For example, using the default behavior :

http PATCH http://localhost:8000/v2/articles/8412b7d7da40467e9afbad8b6f15c20f \
 unread=False marked_read_on=1425316211577 marked_read_by=Ipad \
 --auth 'Natim:' -v

PATCH /v2/articles/8412b7d7da40467e9afbad8b6f15c20f HTTP/1.1
Host: localhost:8000
[...]

{
 "marked_read_by": "Ipad",
 "marked_read_on": "1425316211577",
 "unread": "False"
}

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
[...]

{
 "added_by": "Natim",
 "added_on": 1425383479321,
 "archived": false,
 "excerpt": "",
 "favorite": false,
 "id": "8412b7d7da40467e9afbad8b6f15c20f",
 "is_article": true,
 "last_modified": 1425383532546,
 "marked_read_by": "Ipad",
 "marked_read_on": 1425316211577,
 "read_position": 0,
 "resolved_title": "What’s Hawk authentication and how to use it?",
 "resolved_url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "stored_on": 1425383479321,
 "title": "The Hawk Authorization protocol",
 "unread": false,
 "url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "word_count": null
}

Using Response-Behavior: light

http PATCH http://localhost:8000/v2/articles/8412b7d7da40467e9afbad8b6f15c20f \
 unread=False marked_read_on=1425316211577 marked_read_by=Ipad \
 Response-Behavior:light \
 --auth 'Natim:' -v

PATCH /v2/articles/8412b7d7da40467e9afbad8b6f15c20f HTTP/1.1
Host: localhost:8000
Response-Behavior: light
[...]

{
 "marked_read_by": "Ipad",
 "marked_read_on": "1425316211577",
 "unread": "False"
}

HTTP/1.1 200 OK
[...]
Content-Type: application/json; charset=UTF-8

{
 "marked_read_by": "Ipad",
 "marked_read_on": 1425316211577,
 "unread": false
}

Using Response-Behavior: diff

http PATCH http://localhost:8000/v2/articles/8412b7d7da40467e9afbad8b6f15c20f \
 unread=False marked_read_on=1425316211577 marked_read_by=Ipad \
 Response-Behavior:diff \
 --auth 'Natim:' -v

PATCH /v2/articles/8412b7d7da40467e9afbad8b6f15c20f HTTP/1.1
Host: localhost:8000
Response-Behavior: diff
[...]

{
 "marked_read_by": "Ipad",
 "marked_read_on": "1425316211577",
 "unread": "False"
}

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
[...]

{}

Errors

If a read-only field is modified, a 400 Bad request error is returned.

If the record is missing (or already deleted), a 404 Not Found error is returned. The client might
decide to ignore it.

If the request header If-Unmodified-Since is provided, and if the record has
changed meanwhile, a 412 Precondition failed error is returned.

	note:	last_modified is updated to the current server timestamp, only if a
field value was changed.

	note:	Changing read_position never generates conflicts.

	note:	read_position is ignored if the value is lower than the current one.

	note:	If unread is changed to false, marked_read_on and marked_read_by
are expected to be provided.

	note:	If unread was already false, marked_read_on and marked_read_by
are not updated with provided values.

	note:	If unread is changed to true, marked_read_by, marked_read_on
and read_position are reset to their default value.

Conflicts

If changing the article resolved_url violates the unicity constraint, a
409 Conflict error response is returned (see error channel).

	note:	Note that url is a readonly field, and thus cannot generate conflicts
here.

Example

http PATCH http://localhost:8000/v2/articles/30afb809ca7745a58496a09c6a4afcac \
 title="What’s Hawk authentication and how to use it?" \
 If-Unmodified-Since:1425054146681 \
 --auth "admin:" -v

PATCH /v2/articles/30afb809ca7745a58496a09c6a4afcac HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Basic YWRtaW46
Content-Length: 63
Content-Type: application/json; charset=utf-8
Host: localhost:8000
If-Unmodified-Since: 1425054146681
User-Agent: HTTPie/0.8.0

{
 "title": "What’s Hawk authentication and how to use it?"
}

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Last-Modified, Alert
Content-Length: 616
Content-Type: application/json; charset=UTF-8
Date: Fri, 27 Feb 2015 16:24:21 GMT
Server: waitress

{
 "added_by": "Natim",
 "added_on": 1425054146680,
 "archived": false,
 "excerpt": "",
 "favorite": false,
 "id": "30afb809ca7745a58496a09c6a4afcac",
 "is_article": true,
 "last_modified": 1425054261938,
 "marked_read_by": null,
 "marked_read_on": null,
 "read_position": 0,
 "resolved_title": "The Hawk Authorization protocol",
 "resolved_url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "stored_on": 1425054146680,
 "title": "What’s Hawk authentication and how to use it?",
 "unread": true,
 "url": "https://blog.mozilla.org/services/2015/02/05/whats-hawk-and-how-to-use-it/",
 "word_count": null
}

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Batch operations

POST /batch

Requires an FxA OAuth authentication

The POST body is a mapping, with the following attributes:

	requests: the list of requests (limited to 25 by default)

	defaults: (optional) default requests values in common for all requests

Each request is a JSON mapping, with the following attribute:

	method: HTTP verb

	path: URI

	body: a mapping

	headers: (optional), otherwise take those of batch request

{
 "defaults": {
 "method" : "POST",
 "path" : "/articles",
 "headers" : {
 ...
 }
 },
 "requests": [
 {
 "body" : {
 "title": "MoFo",
 "url" : "http://mozilla.org",
 "added_by": "FxOS",
 }
 },
 {
 "body" : {
 "title": "MoCo",
 "url" : "http://mozilla.com"
 "added_by": "FxOS",
 }
 },
 {
 "method" : "PATCH",
 "path" : "/articles/409",
 "body" : {
 "read_position" : 3477
 }
 }
]
]

The response body is a list of all responses:

{
 "responses": [
 {
 "path" : "/articles/409",
 "status": 200,
 "body" : {
 "id": 409,
 "url": "...",
 ...
 "read_position" : 3477
 },
 "headers": {
 ...
 }
 },
 {
 "status": 201,
 "path" : "/articles",
 "body" : {
 "id": 411,
 "title": "MoFo",
 "url" : "http://mozilla.org",
 ...
 },
 },
 {
 "status": 201,
 "path" : "/articles",
 "body" : {
 "id": 412,
 "title": "MoCo",
 "url" : "http://mozilla.com",
 ...
 },
 },
]
]

	warning:	Since the requests bodies are necessarily mappings, posting arbitrary data
(like raw text or binary)is not supported.

	note:	Responses are provided in the same order than requests.

	note:	A form of payload optimization for massive operations is planned.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Utility endpoints for OPS and Devs

GET /

The returned value is a JSON mapping containing:

	hello: the name of the service (e.g. "reading list")

	version: complete version ("X.Y.Z")

	url: absolute URI (without a trailing slash) of the API (can be used by client to build URIs)

	eos: date of end of support in ISO 8601 format ("yyyy-mm-dd", undefined if unknown)

	documentation: The url to the service documentation. (this document!)

GET /__heartbeat__

Return the status of each service your application depends on. The
returned value is a JSON mapping containing:

	database true if operational

Return 200 if the connection with each service is working properly
and 503 if something doesn’t work.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Server timestamps

In order to avoid race conditions, all timestamps manipulated by the server are
not true HTTP date values, nor milliseconds EPOCH timestamps.

They are milliseconds EPOCH timestamps with the guarantee of a change per timestamp update.
If two changes happen at the same millisecond, they will have two differents timestamps.

The Last-Modified header with the last timestamp of the collection for a given
user will be given on collection and record GET endpoints.

Last-Modified: 1422375916186

	note:	Both fields added_on and marked_on will contain actual timestamps
(from device perspective), used for calendar year information display.

All timestamp of the app will be set in milliseconds.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

API versioning

Versionning

The API versioning is based on the application version deployed. It follows semver [http://semver.org/].

During development the server will be 0.X.X, the server endpoint will be prefixed by /v2.

Each non retro-compatible API change will imply the major version number to be incremented.
Everything will be made to avoid retro incompatible changes.

The / endpoint will redirect to the last API version.

Deprecation

A track of the client version will be kept to know after which date each old version can be shutdown.

The date of the end of support is provided in the API root URL (e.g. /v2)

Using the Alert response header, the server can communicate any potential warning
messages, information, or other alerts.

The value is JSON mapping with the following attributes:

	code: one of the strings "soft-eol" or "hard-eol";

	message: a human-readable message (optional);

	url: a URL at which more information is available (optional).

A 410 Gone error response can be returned if the
client version is too old, or the service had been remplaced with
a new and better service using a new protocol version.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Backoff indicators

Backoff header on heavy load

A Backoff header will be added to the success responses (>=200 and
<400) when the server is under heavy load. It provides the client with
a number of seconds during which it should avoid doing unnecessary
requests.

Backoff: 30

	note:	The back-off time is configurable on the server.

	note:	In other implementations at Mozilla, there was
X-Weave-Backoff and X-Backoff but the X- prefix for
header has been deprecated since [http://tools.ietf.org/html/rfc6648].

Retry-After indicators

A Retry-After header will be added to error responses (>=500),
telling the client how many seconds it should wait before trying
again.

Retry-After: 30

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

 	API Endpoints

Error responses

Protocol description

Every response is JSON.

If the HTTP status is not OK (<200 or >=400), the response contains a JSON mapping, with the following attributes:

	code: matches the HTTP status code (e.g 400)

	errno: stable application-level error number (e.g. 109)

	error: string description of error type (e.g. "Bad request")

	message: context information (e.g. "Invalid request parameters")

	info: additional details (e.g. URL to error details)

Example response

{
 "code": 400,
 "errno": 109,
 "error": "Bad Request",
 "message": "Invalid posted data",
 "info": "https://server/docs/api.html#errors"
}

Error codes

	status code
	errno
	description

	401
	104
	Missing Authorization Token

	401
	105
	Invalid Authorization Token

	400
	106
	request body was not valid JSON

	400
	107
	invalid request parameter

	400
	108
	missing request parameter

	400
	109
	invalid posted data

	404
	110
	Invalid Token / id

	404
	111
	Missing Token / id

	411
	112
	Content-Length header was not provided

	413
	113
	Request body too large

	412
	114
	Resource was modified meanwhile

	405
	115
	Method not allowed on this end point

	429
	117
	Client has sent too many requests

	403
	121
	Resource’s access forbidden for this user

	409
	122
	Another resource violates constraint

	500
	999
	Internal Server Error

	503
	201
	Service Temporary unavailable due to high load

	410
	202
	Service deprecated

Validation errors

In case multiple validation errors occur on a request, they will be
returned one at a time.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

Data model

Articles

	Attribute
	Type
	Comment
	Mandatory*
	Default Value

	id
	UUID
	
	
	uuid()

	last_modified
	Timestamp
	server timestamp
	
	

	url
	URL
	valid (RFC)
	YES
	

	preview
	URL
	feature image URL
	
	

	title
	String(1024)
	1 character min.
	YES
	

	resolved_url
	URL
	after potential redirections
	
	url

	resolved_title
	String(1024)
	extracted from target page
	
	title

	excerpt
	Text
	first 200 words of the article
	
	empty text

	archived
	Boolean
	
	
	false

	favorite
	Boolean
	
	
	false

	is_article
	Boolean
	false if no textual content
	
	true

	word_count
	Integer
	
	
	null

	unread
	Boolean
	
	
	true

	added_by
	Device
	device name (cf. issue #23)
	YES
	

	added_on
	Timestamp
	device timestamp
	
	server time

	stored_on
	Timestamp
	server timestamp
	
	server time

	marked_read_by
	Device
	device name (cf. issue #23)
	
	null

	marked_read_on
	Timestamp
	device timestamp
	
	null

	read_position
	Integer
	Words read from the beginning
	
	0

Mandatory : The field has to be provided on creation.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

Installation

Run locally

Reading List is based on top of the cliquet [https://cliquet.rtfd.org] project, and
as such, please refer to cliquet’s documentation for more details.

For development

By default, Reading List persists the records and internal cache in a PostgreSQL
database.

The default configuration will connect to the postgres database on
localhost:5432, with user/password postgres/postgres. See more details
below about installation and setup of PostgreSQL.

make serve

Using Docker

Reading List uses Docker Compose [http://docs.docker.com/compose/], which takes
care of running and connecting PostgreSQL:

docker-compose up

Authentication

By default, Reading List relies on Firefox Account OAuth2 Bearer tokens to authenticate
users.

See cliquet documentation [http://cliquet.readthedocs.org/en/latest/configuration.html#authentication]
to configure authentication options.

Install and setup PostgreSQL

(requires PostgreSQL 9.3 or higher).

Using Docker

docker run -e POSTGRES_PASSWORD=postgres -p 5434:5432 postgres

Linux

On debian / ubuntu based systems:

apt-get install postgresql postgresql-contrib

By default, the postgres user has no password and can hence only connect
if ran by the postgres system user. The following command will assign it:

sudo -u postgres psql -c "ALTER USER postgres PASSWORD 'postgres';"

OS X

Assuming brew [http://brew.sh/] is installed:

brew update
brew install postgresql

Create the initial database:

initdb /usr/local/var/postgres

Cryptography libraries

Linux

On Debian / Ubuntu based systems:

apt-get install libffi-dev libssl-dev

On RHEL-derivatives:

apt-get install libffi-devel openssl-devel

OS X

Assuming brew [http://brew.sh/] is installed:

brew install libffi openssl pkg-config

Running in production

Recommended settings

Most default setting values in the application code base are suitable for production.

But the set of settings mentionned below might deserve some review or adjustments:

cliquet.http_scheme = https
cliquet.paginate_by = 100
cliquet.batch_max_requests = 25
cliquet.delete_collection_enabled = false
cliquet.basic_auth_enabled = false
cliquet.storage_pool_maxconn = 50
cliquet.cache_pool_maxconn = 50
fxa-oauth.cache_ttl_seconds = 3600

	note:	For an exhaustive list of available settings and their default values,
refer to cliquet source code [https://github.com/mozilla-services/cliquet/blob/93b94a4ce7f6d8788e2c00b609ec270c377851eb/cliquet/__init__.py#L34-L59].

Monitoring

Heka
cliquet.logging_renderer = cliquet.logs.MozillaHekaRenderer

StatsD
cliquet.statsd_url = udp://carbon.server:8125

Application output should go to stdout, and message format should have no
prefix string:

[handler_console]
class = StreamHandler
args = (sys.stdout,)
level = INFO
formater = heka

[formatter_heka]
format = %(message)s

Adapt the logging configuration in order to plug Sentry:

[loggers]
keys = root, sentry

[handlers]
keys = console, sentry

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console, sentry

[logger_sentry]
level = WARN
handlers = console
qualname = sentry.errors
propagate = 0

[handler_console]
class = StreamHandler
args = (sys.stdout,)
level = INFO
formater = heka

[formatter_heka]
format = %(message)s

[handler_sentry]
class = raven.handlers.logging.SentryHandler
args = ('http://public:secret@example.com/1',)
level = WARNING
formatter = generic

[formatter_generic]
format = %(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

PostgreSQL setup

In production, it is wise to run the application with a dedicated database and
user.

postgres=# CREATE USER produser;
postgres=# CREATE DATABASE proddb OWNER produser;
CREATE DATABASE

The tables needs to be created with the cliquet tool.

$ cliquet --ini config/readinglist.ini migrate

	note:	Alternatively the SQL initialization files can be found in the
cliquet source code (cliquet/cache/postgresql/schemal.sql and
cliquet/storage/postgresql/schemal.sql).

Running with uWsgi

To run the application using uWsgi, an app.wsgi file is provided.
This command can be used to run it:

uwsgi --ini config/readinglist.ini

uWsgi configuration can be tweaked in the ini file in the dedicated
[uwsgi] section.

Here’s an example:

[uwsgi]
wsgi-file = app.wsgi
enable-threads = true
http-socket = 127.0.0.1:8000
processes = 3
master = true
module = readinglist
harakiri = 30
uid = readinglist
gid = readinglist
virtualenv = .
lazy = true
lazy-apps = true

To use a different ini file, the READINGLIST_INI environment variable
should be present with a path to it.

Running with gevent

It is possible to use gevent [https://gevent.org], by adding this in the
configuration:

readinglist.gevent_enabled = true

Gevent and psycogreen should be installed in the virtualenv for it to work
properly:

.venv/bin/pip install gevent psycogreen

	note:	Gevent support is known to have issues with Python 3, and as such, it
is discouraged to use it in this environment.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reading List 2.0.0 documentation

Contributing

Thank you for considering to contribute to Reading List!

	note:	No contribution is too small; please submit as many fixes for typos and
grammar bloopers as you can!

	note:	Open a pull-request even if your contribution is not ready yet! It can
be discussed and improved collaboratively!

Run tests

make tests

Run load tests

From the loadtests folder:

make test SERVER_URL=http://localhost:8000

Run a particular type of action instead of random:

LOAD_ACTION=batch_create make test SERVER_URL=http://localhost:8000

(See loadtests source code for an exhaustive list of available actions and
their respective randomness.)

IRC channel

Join #storage on irc.mozilla.org!

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Reading List 2.0.0 documentation

Changelog

This document describes changes between each past release.

2.0.0 (2015-07-22)

Upgraded to Cliquet 2.3+.

Breaking changes

	Now requires PostgreSQL 9.4+

	Endpoints now expect articles to be posted in a data attribute

	Endpoints responses now contain a data attribute

	Endpoints switched from If-Modified-Since and If-Unmodified-Since
to Etags

1.7.0 (2015-04-15)

New feature

	Article title now allowed to be empty or null (#250 and #253)
(Original https://bugzilla.mozilla.org/show_bug.cgi?id=1152915)

Bug fixes

	Fix stored_on not being forced on creation (fixes #215)

Internal changes

	Enabled Coveralls with failing tests if coverage less than 100%

1.6.0 (2015-04-10)

Deployment instructions

Some changes were introduced in database schema. Run schema migration command
before starting the application:

cliquet --ini production.ini migrate

New features

	Add more info in heartbeat (fixes #229)

	Clarify conflict docs (#244)

	Clarify data model docs (#247)

	Add PostgreSQL schema migration system (mozilla-services/cliquet#139)

See every features brought by Cliquet 1.7 [https://github.com/mozilla-services/cliquet/releases/tag/1.7.0]

Bug fixes

	Fix login prompt when Basic Auth is disabled (#237)

	Fix random IndexError in load tests (#238)

	Fix smoke tests configuration reading

	Fix Heka logging format of objects (#199)

	Fix performance of record insertion using ordered index (mozilla-services/cliquet#138)

	Fix 405 errors not JSON formatted (mozilla-services/cliquet#88)

See every bug fixes brought by Cliquet 1.7 [https://github.com/mozilla-services/cliquet/releases/tag/1.7.0]

1.5.0 (2015-03-30)

New features

	Split schema initialization from application startup, using a command-line
tool.

cliquet --ini production.ini init

Bug fixes

	Fix documentation about WSGI and Sentry

	Fix connection pool no being shared between cache and storage (mozilla-services/cliquet#176)

	Default connection pool size to 10 (instead of 50) (mozilla-services/cliquet#176)

	Warn if PostgreSQL session has not UTC timezone (mozilla-services/cliquet#177)

Internal changes

	Deprecated cliquet.storage_pool_maxconn and cliquet.cache_pool_maxconn
settings (renamed to cliquet.storage_pool_size and cliquet.cache_pool_size)

1.4.0 (2015-03-27)

New features

	Smoke test of FxA authentication using Loads (#220)

	Mesure calls on the authentication policy (mozilla-services/cliquet#167)

	Force default pagination to 100 if not set in settings (#214)

	Add documentation about setting up Sentry loggers (#227)

Breaking changes

	Prefix statsd metrics with the value of cliquet.statsd_prefix or
cliquet.project_name (mozilla-services/cliquet#162)

	http_scheme setting has been replaced by cliquet.http_scheme and
cliquet.http_host was introduced (mozilla-services/cliquet#151, mozilla-services/cliquet#166)

	URL in the hello view now has version prefix (mozilla-services/cliquet#165)

Bug fixes

	Fix changing read position (#213)

	Fix some PostgreSQL connection bottlenecks (mozilla-services/cliquet#170)

	Pull monitoring dependencies during install (#218)

Internal changes

	Update of PyFxA to get it working with gevent monkey patching (mozilla-services/cliquet#168)

1.3.0 (2015-03-25)

Deployment instructions

Until the database schema migration system is released (mozilla-services/cliquet#139),
changes on schema have to be applied manually:

ALTER FUNCTION as_epoch(TIMESTAMP) IMMUTABLE;
CREATE INDEX idx_records_last_modified_epoch ON records(as_epoch(last_modified));
CREATE INDEX idx_deleted_last_modified_epoch ON deleted(as_epoch(last_modified));

New features

	Add setting to enable to asynchronous PostgreSQL using Psycogreen [https://pypi.python.org/pypi/psycogreen].
(default: disabled). See installation documentation for more details on this.

	Add ability to execute only action in loads tests using the LOAD_ACTION
environment variable. See contributing documentation for more details (#208).

	Add new load tests with several kinds of batch operations (#204)

Bug fixes

	Fix pagination URL in Next-page headers (fixes #210)

	Fix regression on records URL unicity when using ujson (#205)

	Fix hashing of user_id for BasicAuth (mozilla-services/cliquet#128)

	Force PostgreSQl session timezone to UTC (mozilla-services/cliquet#122)

	Make sure the paginate_by setting overrides the passed limit
argument (mozilla-services/cliquet#129)

	Fix limit comparison under Python3 (mozilla-services/cliquet#143)

	Do not serialize using JSON if not necessary (mozilla-services/cliquet#131)

	Fix crash of classic logger with unicode (mozilla-services/cliquet#142)

	Fix crash of CloudStorage backend when remote returns 500 (mozilla-services/cliquet#142)

	Fix behaviour of CloudStorage with backslashes in querystring (mozilla-services/cliquet#142)

	Fix python3.4 segmentation fault (mozilla-services/cliquet#142)

	Add missing port in Next-Page header (mozilla-services/cliquet#147)

Internal changes

	Use postgres cache in loads tests (#203)

	Use ujson again, it was removed in the 1.3.2 release (#132)

	Add index for as_epoch(last_modified) (#130). Please add the following
statements to SQL for the migration:

	Prevent fetching to many records for one user collection (#130)

	Use UPSERT for the heartbeat (#141)

	Improve tests of basic auth (#128)

1.2.0 (2015-03-20)

New features

	Add PostgreSQL connection pooling, with new settings
cliquet.storage_pool_maxconn and cliquet.cache_pool_maxconn
(Default: 50) (mozilla-services/cliquet#112)

	Add StatsD [https://github.com/etsy/statsd/] support,
enabled with cliquet.statsd_url = udp://server:port (mozilla-services/cliquet#114)

	Add Sentry [http://sentry.readthedocs.org] support,
enabled with cliquet.sentry_url = http://user:pass@server/1 (mozilla-services/cliquet#110)

Bug fixes

	Fix FxA verification cache not being used (mozilla-services/cliquet#103)

	Fix heartbeat database check (mozilla-services/cliquet#109)

	Fix PATCH endpoint crash if request has no body (mozilla-services/cliquet#115)

Internal changes

	Switch to ujson [https://pypi.python.org/pypi/ujson] for JSON
de/serialization optimizations (mozilla-services/cliquet#108)

	Use async connections for psycopg (#201)

	Imrpove the documentation layout (#200)

1.1.0 (2015-03-18)

Breaking changes

	cliquet.storage.postgresql now uses UUID as record primary key (mozilla-services/cliquet#70)

	Settings cliquet.session_backend and cliquet.session_url were
renamed cliquet.cache_backend and cliquet.cache_url respectively.

	FxA user ids are not hashed anymore (mozilla-services/cliquet#82)

	Setting cliquet.retry_after was renamed cliquet.retry_after_seconds

	OAuth2 redirect url now requires to be listed in
fxa-oauth.webapp.authorized_domains (e.g. *.mozilla.com)

	Batch are now limited to 25 requests by default (mozilla-services/cliquet#90)

	OAuth relier has been disabled by default (#193)

New features

	Every setting can be specified via an environment variable
(e.g. cliquet.storage_url with CLIQUET_STORAGE_URL)

	Logging now relies on structlog [http://structlog.org] (mozilla-services/cliquet#78)

	Logging output can be configured to stream JSON (mozilla-services/cliquet#78)

	New cache backend for PostgreSQL (mozilla-services/cliquet#44)

	Documentation was improved on various aspects (mozilla-services/cliquet#64, mozilla-services/cliquet#86)

	Handle every backend errors and return 503 errors (mozilla-services/cliquet#21)

	State verification for OAuth2 dance now expires after 1 hour (mozilla-services/cliquet#83)

	Add the preview field for an article (#156)

	Setup the readinglist OAuth scope (#16)

	Add a uwsgi file (#180)

Bug fixes

	FxA OAuth views errors are now JSON formatted (mozilla-services/cliquet#67)

	Prevent error when pagination token has bad format (mozilla-services/cliquet#72)

	List of CORS exposed headers were fixed in POST on collection (mozilla-services/cliquet#54)

	Fix environment variables not overriding configuration (mozilla-services/cliquet#100)

	Got rid of custom CAST in PostgreSQL storage backend to prevent installation
errors without superuser (ref #174, mozilla-services/cliquet#99)

1.0 (2015-03-03)

Breaking changes

	Most configuration entries were renamed, see config/readinglist.ini
example to port your configuration

	Status field was removed, archived and deleted fields were added
(requires a database flush.)

	Remove Python 2.6 support

New features

	Add the /fxa-oauth/params endpoint

	Add the DELETE /articles endpoint
(Needs cliquet.delete_collection_enabled configuration)

	Add the Response-Behavior header on PATCH /articles

	Add HTTP requests / responses examples in the documentation

	Use Postgresql as the default database backend

Internal changes

	Main code base was split into a separate project
Cliquet [https://github.com/mozilla-services/cliquet]

	Perform continuated pagination in loadtests

	Use PostgreSQL for loadtests

0.2.2 (2015-02-13)

Bug fixes

	Fix CORS preflight request permissions (PR #119)

0.2.1 (2015-02-11)

Breaking changes

	Internal user ids for FxA are now prefixed, all existing records
will be lost (refs #109)

Bug fixes

	Fix CORS headers on validation error responses (ref #104)

	Fix handling of defaults in batch requests (ref #111, #112)

0.2 (2015-02-09)

Breaking changes

	PUT endpoint was disabled (ref #42)

	_id field was renamed to id (ref PR #91)

	FxA now requires a redirection URL (ref PR #69)

New features

	URLs uniques by user (ref #20)

	Handle conflicts responses (ref #45)

	Conditional changes for some articles attributes (ref #6)

	Batching support (ref #2)

	Pagination support (ref #25)

	Online documentation available at http://readinglist.readthedocs.org (ref PR #73)

	Basic Auth nows support any user/password combination (ref PR #78)

Bug fixes

	marked_read_by was ignored on PATCH (ref PR #72)

	Timestamp was not incremented on DELETE (ref PR #95)

	Fix number of bugs regarding support of CORS in error views (ref PR #105)

	Previous Basic Auth could impersonate FxA user (ref PR #78)

0.1 (2015-01-30)

	Allow Cors (#67)

	Log incomming request to the console (#65)

	Add timestamp for 304 and 412 response (#40)

	Add time vector to GET /articles and GET /articles/<id> (#4)

	Preconditions Headers for Update and Creation (#60)

	Provide number of items in headers of GET /articles (#39)

	Check for filter values (#58)

	Handle article title length (#37)

	Support min, max and no keywords filters (#43)

	Prevent to modify read-only fields (#26)

	Filtering and sort querystring (#44)

	Redis storage (#50)

	Handle errors (#24 - #49)

	Add loadtests (#47)

	Handle API version in URL (#33)

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Reading List 2.0.0 documentation

Index

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Reading List 2.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

